

Name: _____

Date: _____

M12P HW Section 6.1 Proving and Verifying Trigonometric Identities

1. What is a trigonometric Identity? What is the difference between an “identity” and an “equation”? Explain:

2. How do you prove a trigonometric Identity? Explain:

3. What is the difference between “verifying” a trig identity versus “proving a trig identity? Explain:

4. When verifying a trigonometric identity, what angle should you use? 0 , 2π , $\frac{\pi}{2}$, or any angle in particular? Explain?

5. Suppose you tried to verify if a trig equation was an identity by using an arbitrary angle. If the equation wasn’t equal, can you still try and prove the equation to be an identity? Explain:

6. When a trig proof has an expression with a binomial in the denominator, how should you simplify it?
ie:
$$\frac{\cos \theta}{1 - \sin \theta}$$
 or
$$\frac{\sin^2 \theta}{1 - \cos \theta}$$

7. When a trig proof has any of the following functions, how should you simplify it? $\sin^2 \theta$, $\cos^2 \theta$, $\tan^2 \theta$

8. When a trig proof has any of the following functions, how should you simplify it? *ie:* $\csc \theta$, $\sec \theta$, $\cot \theta$

9. How would you simplify $\frac{1}{\csc \theta}$, $\frac{1}{\sec \theta}$, $\frac{1}{\cot \theta}$ into $\sin \theta$ or $\cos \theta$

10. Identify which of the following equations below is a trigonometric identity?

a) $\sin^2 x + \cos^2 = 1$	b) $\sin(-x) = -\sin x$	c) $\cos(-x) = -\cos x$
d) $\cos(-x) = \cos x$	e) $\tan x = \frac{\sin x}{\cos x}$	f) $\tan(-x) = \tan x$
g) $\csc x = \frac{1}{\sin x}$	h) $\sec \theta \times \frac{1}{\cos \theta} = \sin \theta$	i) $\sec \theta \times \cos \theta = 1$
j) $\frac{\sin 2\theta}{2} = \sin \theta$	k) $\sin \theta + \cos \theta = 1$	l) $\sin 2\theta = 2 \sin \theta$

11. Pick a random angle between 0 and 2pi, verify which of the following are trigonometric identities:

a) $\tan x + \cot x = \sec x \csc x$	b) $\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$
c) $\sec^2 x - \csc^2 x = \frac{\sec^2 x}{\csc^2 x}$	d) $\sec^2 x + \csc^2 x = (\tan x + \cot x)^2$

12. Prove the following Identities. Indicate any restrictions:

$$\text{a) } \frac{\sin \theta + \tan \theta}{\cos \theta + 1} = \tan \theta$$

$$\text{b) } \frac{\csc \theta - 1}{\cot \theta} = \frac{\cot \theta}{\csc \theta + 1}$$

$$c) \frac{\csc \theta - \sin \theta}{\cot \theta} = \cos \theta$$

$$d) \frac{\sec \theta}{\tan \theta + \cot \theta} = \sin \theta$$

$$e) \frac{1 - \cos \theta}{\sin \theta} = \frac{1}{\csc \theta + \cot \theta}$$

$$f) \frac{\sec \theta}{1 - \cos \theta} = \frac{\sec \theta + 1}{\sin^2 \theta}$$

$$g) \frac{1}{1 + \cos \theta} + \frac{1}{1 - \cos \theta} = \frac{2}{\sin^2 \theta}$$

$$h) 1 + \cos \theta = \frac{\sin^2 \theta}{1 - \cos \theta}$$

$$\text{i) } \frac{\sin \theta}{1+\cos \theta} + \frac{1+\cos \theta}{\sin \theta} = 2 \csc \theta$$

$$\text{j) } \frac{1+\sin \theta}{\cos \theta} = \frac{\cos \theta}{1-\sin \theta}$$

$$\text{k) } \sec \theta + \tan \theta = \frac{1}{\sec \theta - \tan \theta}$$

$$\text{l) } \tan \theta + \cot \theta = \sec \theta \csc \theta$$

$$\text{m) } \frac{\sec^2 \theta - 1}{\sec^2 \theta} = \sin^2 \theta$$

$$\text{p) } \frac{1}{1-\sin \theta} + \frac{1}{1+\sin \theta} = 2 \sec^2 \theta$$

$$\text{q) } (\tan^2 \theta + 1)(\cos^2 \theta - 1) = -\tan^2 \theta$$

$$\text{r) } \tan \theta + \cos \theta = \sec \theta \csc \theta$$